Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
[7]
[2, 2, 3]
思路: 有规律的查找,避免重复。用递归得到所有的解
class Solution {public: vector> combinationSum(vector &candidates, int target) { vector > ans; if(candidates.empty()) return ans; sort(candidates.begin(), candidates.end()); //从小到大排序 recursion(ans, candidates, 0 , target); return ans; } void recursion( vector > &ans, vector candidates, int k, int target) { static vector partans; if(target == 0) //如果partans中数字的总和已经达到目标, 压入答案 { ans.push_back(partans); return; } if(target < 0) return; for(int i = k; i < candidates.size(); i++) //当前压入大于等于candidates[k]的数字 { int sum = candidates[i]; while(sum <= target) //数字可以压入多次,只要和小于等于目标即可 { partans.push_back(candidates[i]); recursion(ans, candidates, i + 1, target - sum); //后面只压入大于当前数字的数,避免重复 sum += candidates[i]; } while(!partans.empty() && partans.back() == candidates[i]) //状态还原 partans.pop_back(); } }};
其他人更短的递归,用参数来传partans. 省略了状态还原的代码,数字压入多次也采用了递归而不是循环
class Solution {public: void search(vector & num, int next, vector & pSol, int target, vector>& result) { if(target == 0) { result.push_back(pSol); return; } if(next == num.size() || target - num[next] < 0) return; pSol.push_back(num[next]); search(num, next, pSol, target - num[next], result); pSol.pop_back(); search(num, next + 1, pSol, target, result); } vector > combinationSum(vector &num, int target) { vector > result; sort(num.begin(), num.end()); vector pSol; search(num, 0, pSol, target, result); return result; }};
其他人动态规划的代码,还没看,速度并不快, 但很短
class Solution {public: vector> combinationSum(vector &candidates, int target) { sort(candidates.begin(), candidates.end()); vector< vector< vector > > combinations(target + 1, vector >()); combinations[0].push_back(vector ()); for (auto& score : candidates) for (int j = score; j <= target; j++){ auto sls = combinations[j - score]; if (sls.size() > 0) { for (auto& s : sls) s.push_back(score); combinations[j].insert(combinations[j].end(), sls.begin(), sls.end()); } } return combinations[target];}};